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Renormalization Group for Strongly Coupled Maps
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Systems of strongly coupled chaotic maps generically exhibit collective behavior
emerging out of extensive chaos. We show how the well-known renormalization
group (RG) of unimodal maps can be extended to the coupled systems, and in
particular to coupled map lattices (CMLs) with local diffusive coupling. The
RG relation derived for CMLs is nonperturbative, i.e., not restricted to a par-
ticular class of configurations nor to some vanishingly small region of parameter
space. After defining the strong-coupling limit in which the RG applies to
almost all asymptotic solutions, we first present the simple case of coupled tent
maps. We then turn to the general case of unimodal maps coupled by diffusive
coupling operators satisfying basic properties, extending the formal approach
developed by Collet and Eckmann for single maps. We finally discuss and
illustrate the general consequences of the RG: CMLs are shown to share univer-
sal properties in the space-continuous limit which emerges naturally as the
group is iterated. We prove that the scaling properly ties of the local map carry
to the coupled systems, with an additional scaling factor of length scales implied
by the synchronous updating of these dynamical systems. This explains various
scaling laws and self-similar features previously observed numerically.

KEY WORDS: Coupled map lattice; nontrivial collective behavior; renor-
malization group; spatiotemporal chaos.

1. INTRODUCTION

Renormalization group (RG) ideas have been instrumental in unveiling the
universal features of the cascades of bifurcations of nonlinear dynamical
systems with few degrees of freedom.(2) Simple maps of the real interval
such as the logistic map have been the models of choice on which most
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theoretical advances were made.(3, 1, 4, 6) These results have contributed
greatly to our understanding of (temporally) chaotic systems.

Our current understanding of spatiotemporal chaos is, however, much
less advanced, and no similarly general framework is available. As a matter
of fact, even the term spatiotemporal chaos is somewhat ill-defined, loosely
referring to situations where the basic equations cannot be legitimately
reduced to the interaction of a few modes. Of all models of spatiotemporal
chaos, coupled map lattices (CMLs) are among the most attractive. These
discrete-time discrete-space dynamical systems in which maps, arranged at
the nodes of a lattice, interact locally can be seen as the direct corre-
spondents, at the spatiotemporal level, of the simple maps of the interval
mentioned above. Existing literature on CMLs tend to be overwhelmingly
descriptive, stressing the ability of these models to mimic nature, but lack-
ing unifying, structuring results.(7) In particular, there is not, so far, any
notion of universality akin to that at work within low-dimensional dynami-
cal systems.

In this context it has appeared natural to some researchers to try to
extend single-map RG to CMLs, in the hope of uncovering some universal
features of these systems, and more generally, of spatiotemporal chaos.
These works are, however, restricted to perturbative treatments around the
accumulation points of bifurcation cascades of the local map and usually
consider the limit of weak coupling between maps for configurations
limited to small deviations from spatially-homogeneous solutions in one or
two space dimensions.(8, 9) One notable exception is the numerical work of
van de Water and Bohr, (10) who showed numerically that many quantities
of interest do exhibit scaling properties related to those of the local map,
even for rather large values of the coupling.

Recently, we introduced a non-perturbative renormalization group
approach to CMLs with linear diffusive coupling which translates to the
spatiotemporal level the universal features of the local maps involved.(11)

We showed that, under broad conditions, the bifurcation diagrams of
CMLs present the same self-similarity as that of their local maps, with the
same coupling-independent accumulation point, around which lengthscales
diverge with a universal scaling related to the diffusive coupling. Here, we
give a more comprehensive exposition of these results, following in par-
ticular the approach of Collet and Eckmann of the RG for simple maps.(1)

The paper is organized as follows. In Section 2, we define the general
CMLs we study, which consist of identical, chaotic, unimodal, local maps
coupled by a local ``diffusive'' coupling operator. We then present a short
description of their collective dynamics in the limit of strong coupling
between maps, which are the regimes where our RG approach is most
important since it then applies to almost all asymptotic solutions. This is
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followed by the introduction of the continuous-space limit of these CMLs,
which plays a major role in the RG treatment.

Section 3 is devoted to a precise definition and a quantitative estimate
of the strong-coupling limit mentioned above. Various degrees of collective
dynamics are defined, and their relationship to the band structure of the
local chaos explained.

Our extension of RG methods to CMLs is first presented in Section 4
for the case of coupled tent maps, where the RG is exact and explicit. The
consequences of these results on various dynamical properties are also
discussed.

In Section 5, we treat the case of coupled general unimodal maps. The
approach of Collet and Eckmann is formally extended to CMLs, and
approximations of their RG are introduced.

Section 6 is a conclusion where we summarize our results and discuss
some general issues related to our findings.

2. COLLECTIVE DYNAMICS

We consider the discrete-time evolution of an infinite ensemble of
(real) variables X=(Xr� )r� # L for some index set L. In the following, L will
usually represent a regular lattice, but the case of globally-coupled maps
will also be discussed. Each local variable takes its value on an interval I
while the whole configuration X lies in the phase space I=I L. The instan-
taneous configuration Xt is updated synchronously by

Xt+1=2 b S(Xt) (1)

where S transforms each variable X t
r� by a non-linear local map S, and 2

is a linear coupling operator.3 Following classic works on single maps, we
consider one-parameter families of non-linear local maps. Without loss of
generality, such maps can be written under the form

S+(X )=1&+ |X |1+= with + # [0, 2] and =�0 (2)

which leaves the interval I=[&1, 1] invariant. We will in particular con-
sider, in the following, the tent (==0) and the logistic (==1) maps.

Such dynamical systems exhibit a rich phenomenology rooted in the
opposition between the coupling, which drives the local variables towards
complete synchronization, and the non-linearity of the map, which may
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produce chaos. The macroscopic behavior of such systems can be charac-
terized by the evolution in time of L-averaged quantities like the mean
M t=(X t

r� ) , higher-order moments, multi-point correlations, etc. In par-
ticular, single-point moments ( (Xt

r� )
k) of all orders are contained in the

instantaneous distribution (pdf ) of local values, pt. The collective dynamics
can be related to emerging mesoscopic structures��formation of clusters,
synchronization��and to the microscopic trajectories of local variables.

2.1. Coupled Map Lattices

2.1.1. Diffusive Coupling: General Properties. In the case of
coupled map lattices, the local variables Xr� can be chosen to lie at the
nodes of a d-dimensional hypercubic lattice: L=Z d, and 2 to be a dif-
fusive coupling operator. In the following, we consider operators 2 which
verify some basic properties:(8)

1. Linearity, homogeneity and symmetry, which allow to write,

[2(X)]r� 1
=| D(r� 1&r� 2) Xr� 2

dr� 2

where the kernel D(r� 1&r� 2) only depends on the vector difference between
an image site r� 1 and an antecedent r� 2 ; spatial symmetry, D(\� )=D(&\� )
guarantees that the spectrum D� (k9 ) is real.

2. Normalization: � D(\� ) d\� =1 or, equivalently, D� (09 )=1, and non-
negativity: D(\� )�0. This implies that the spectrum D� (k9 ) of 2 lies in the
unit circle. The coupling operator has only one eigenvalue equal to 1
corresponding to the configurations where all sites are synchronized; the
others are smaller than one, and therefore all volumes in phase space
shrink to the line Isyn of synchronized states when 2 is applied repeatedly.

3. Locality: � \� 2D(\� ) d\� =*2
0<� is a diffusion constant, and the

coupling length *0 defines the range of the coupling. It is proportional to
the lattice mesh size &e� & (usually taken to 1): *0=c0 &e� &.

These properties lead to the following form of the spectrum in the
region of small wavenumbers:

D� (k9 )=1&
*2

0

2
k2+ } } } (3)

The large-scale dynamics of coupled systems is expected to depend essen-
tially on the coupling range *0 and not on the particular definition of the
coupling operator.
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For numerical convenience, the diffusive coupling is usually taken to
be the so-called forward coupling to nearest-neighbors:

[2g(X)]r� =(1&2dg) Xr� + g :
e� # V

Xr� +e� (4)

where g is the coupling strength, and V denotes the set of the 2d nearest-
neighbors of site 09 . This operator verifies the properties (1)�(3) with
*0=- 2g &e� &. Even though we do not consider this possibility in the
following, our results also apply to the so-called backward coupling,
defined implicitly through the relation

[2g(X)]r� =Xr� + g :
e� # V

([2g(X)]r� +e� &[2g(X)]r� )

2.1.2. Lattice Dynamics. Let us now present shortly the behavior
displayed during numerical simulations of the system 2g b S+ where the
coupling operator is defined by Eq. (4).

The behavior of the local map S+ is well-known. Parameter space is
divided into two parts. For small values of +, the only attractors are peri-
odic cycles of period 2k, while chaotic behavior can be observed for +>+�

(with +�=1 for the tent map, and +�=1.401... for the logistic map).
In the chaotic region of the local map and for the strong,

``democratic'', equal-weight coupling g=1�(2d+1), the CMLs defined
above display nontrivial collective behavior (NTCB):(12) almost all initial
conditions flow towards one of a few attractors which possess a well-
defined infinite-size, infinite time limit (see Section 3 below and ref. 13 for
a quantitative assessment of this statement). In the asymptotic regime,
spatial averages usually display a low-dimensional motion (periodic, quasi-
periodic,...) while local trajectories are chaotic. (Chaos is in fact extensive,
as seen, e.g., from the proportionality of the Kolmogorov�Sinai entropy to
the volume of the system.) Figures 1(a) and 2(a) show the bifurcation
diagrams of the spatial average M t=(Xt

r� ) for two- and three-dimensional
lattices of coupled tent maps. Decreasing + at fixed g, one observes period-
doubling of the collective behavior, reminiscent of the self-similar structure
of bands of the local map. The instantaneous distribution pt is smooth and
well-defined in the infinite-size limit and follows the same collective
behavior as M t. These period-doubling macroscopic bifurcations are
actually Ising-like phase transitions, and their critical points +c

n differ from
the band-splitting points +� n of S+ .(14)

Approaching +� , it rapidly becomes numerically impossible to resolve
the NTCB since prohibitively large lattices as well as increasing numerical
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Fig. 1. Democratically-coupled (g=0.2) tent maps on a d=2 lattice of linear size L=2048
with periodic boundary conditions: (a) bifurcation diagram of Mt=(X) t (filled circles)
superimposed on that of the local map S+ (small dots). (b)�(d): Asymptotic (large t) dynamics
of the single-site distributions pt: (b): stationary states at +=2 for the system 2m

g b S+ and
1�m�32: pt � pm . For m>1, the asymptotic distributions cannot be separated on this
graph; when m increases, they converge to a universal distribution which is the asymptotic
state reached in the continuous limit 2�

* b S+ . (c): The existence of this limit distribution is
evidenced by the log�log plot of the distance D2=� dX ( pm& p32)2 vs m. (d): period-2 collec-
tive cycle at +=+� 1 for m=1.
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Fig. 1. (Continued )

resolution are then required. In particular, near +� the uniqueness of the
attractor cannot be ascertained, and no evidence of an infinite cascade of
phase transitions is available.

Although only periodic motion have been observed in dimensions
d=2 and 3 (see Figs. 1(a) and 2(a)), more complex NTCB exist for d>3.
Four-dimensional CMLs display regions of the parameter + where two
periodic attractors coexist (e.g., period-2 and period-4 collective regimes for
coupled tent maps). Five-dimensional CMLs display quasi-periodic collec-
tive behavior.(12)
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Fig. 2. d=3 lattice of democratically-coupled (g=1�7) tent maps of linear size L=128 with
periodic boundary conditions: (a): bifurcation diagram of Mt (filled circles) superimposed on
that of the local map (small dots). (b): Asymptotic period-2 collective cycle for the single-
site distribution pt at +=2 for 1�m�8. (c): log�log plot of the distance D2=� dX ( pm& p8)2

vs m. (d): Asymptotic period-4 collective cycle for the single-site distribution pt at +=+� 1 for
m=1.
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Fig. 2. (Continued )

2.2. Continuous Limit

2.2.1. Iterated Couplings. A straightforward generalization of
CMLs of the form 2g b S+ consists in applying several times the operator 2g

after each transformation S+ : the evolution operator becomes 2m
g b S+ and

involves the m-th neighborhood of each site. Although the importance of
such systems is not evident at this stage, they play an essential role in the
RG (see Section 4).
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In the small wavenumber limit, the spectrum of 2m
g reads,

D� m
g (k9 )=1&

*2
0 m
2

k2+ } } }

For large m, the iterated operator 2m
g is equivalent to the coupling

operator with Gaussian kernel:

2m
g &

m � �
2�

* =exp \*2

2
{2+

where *=*0 - m =c0 - m &e� & is the typical range of the coupling and &e� &
is the lattice mesh size.

The coupling length * fixes the size of small spatial structures, i.e., it
characterizes the lengthscale over which the field Xr� varies: below *, sites
are nearly synchronized. When m increases, these structures spread out,
and in the limit m � � the coupling length diverges relatively to the lattice
mesh size &e� &.

In fact, when observing the collective behavior of such a system, one
must consider spatially averaged quantities: this requires to sum over spa-
tial disorder, i.e., over some lengthscale 4 much larger than *, the number
of independent structures in the system being (4�*)d. This indicates that
* is the relevant lengthscale for macroscopic dynamics and that all length-
scales should be considered proportionally to * and not to the lattice mesh
size, which is irrelevant. Taking the limit m � � while keeping a fixed
number of independent ``units'', amounts to keep * fixed while resealing
&e� & as:

&e� & B 1�- m � 0

This defines the continuous limit of coupled map lattices in which a
d-dimensional field of variables X=(Xr� )r� # L , L=Rd, evolves under the
discrete-time dynamics 2�

* b S+ . No continuous-time limit is defined for
such systems: they constitute a Poincare� -section version of the evolution of
spatially extended systems. For the system 2�

* b S+ , the parameter * plays
a trivial role since it is the only length scale which remains after the limit
&e� & � 0 has been taken: changing * amounts to a mere zoom over space.
Therefore, the collective behavior of one-site macroscopic variables like M t

or pt does not depend on *, while correlation functions are simply rescaled
by a change of *. Note that the limit reached, 2�

* , is ``universal'', in the
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sense that it is independent of the choice of the operator 2g , provided it
satisfies properties (1)�(3).

2.2.2. Numerics. Careful numerical investigation of dynamics of
the form 2m

g b S+ has been performed for d=2 and 3 lattices of democrati-
cally-coupled logistic and tent maps for increasing values of m. In these
cases, bifurcation diagrams for any m are not distinguishable from those
displayed in Fig. 1 corresponding to the case m=1. Asymptotic distribu-
tions in the fixed point regime of 2-dimensional lattice of size L=2048 at
+=2 are given in Fig. 1: at fixed +, they quickly converge with increasing
m to a well-defined asymptotic pdf, as seen from the estimation of the
distances D( p1 , p2)=- � ( p1& p2)2 (see insert of Fig. 1). In these cases at
least, the collective behavior is extremely weakly dependent on the details
of the coupling, and the lattice behavior is qualitatively, and, to a large
extent, quantitatively, similar to the continuous limit.

In higher dimensions, the comparison of the usual CMLs (m=1) with
systems with increasing values of m, shows noticeable (quantitative and
qualitative) differences. For example, in dimension 4, the coexistence of
macroscopic attractors seems to disappear for m&8.(15) However, the
numerical estimation of the collective behavior displayed in the continuous
limit requires lattices of increasing linear size, consequently out of reach of
today's even most powerful computers. The precise evaluation of collective
behavior in the continuous limit is therefore impossible.

3. CONDITIONS FOR NONTRIVIAL COLLECTIVE BEHAVIOR

Non-trivial collective behavior, as presented in Section 2.1, is displayed
by CMLs for ``strong'' couplings: it was illustrated with the ``democratic''
value of the coupling strength, namely, g=1�(2d+1), which gives the same
weight to all sites in the local neighbourhood.

When the local map is in a band-chaotic regime, all sites of a lattice
displaying NTCB eventually lie within the same band at any given time:
this is the signature of long-range order emerging from the local dynamics.
This property plays an important role in the definition of a RG for CMLs,
and it is necessary, at this stage, to clarify the conditions of emergence of
NTCB.

In this section, we show that the long range order is the result of a
coarsening process between all possible macroscopic phases. We also show
that there exists a finite threshold value g*e of the coupling strength above
which NTCB is reached from almost all initial conditions.
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3.1. Bands

3.1.1. Banded Chaos. We first review briefly the phenomenology
displayed by unimodal maps. Some of their universal features like the order
of occurrence of periods(5) or the internal similarity(6) depend only on the
existence of a unique maximum and this property is usually referred to as
structural universality.

When the parameter + increases, the map S+ undergoes a cascade of
subharmonic bifurcations. We denote +n the value at which the period 2n&1

regime becomes unstable and above which the system enters period 2n.
These points accumulate at some critical value +� where the system enters
the chaotic regime. Above this value, the local map displays banded chaos,
possibly intermingled with parameter windows of periodic behavior.

At the other end of the inverse cascade, at the value +� 0=2, trajectories
run over the whole interval I=[&1, 1]. When + decreases, asymptotic
trajectories run over one band I 0

S+
=[1&+, 1], the smallest invariant inter-

val for S+ . This band splits at the value +� 1 into two bands I 1, 0
S+

% 0 and
I 1, 1

S+
which are nonintersecting invariant intervals for the iterated map

S 2
+=S+ b S+ , and ergodic components for S+ :

I 1, 0
S+

& I 1, 1
S+

=<, S+(I 1, 0
S+

)/I 1, 1
S+

and S+(I 1, 1
S+

)/I 1, 0
S+

Below +� 1 , and for almost all initial conditions, the system reaches a chaotic
asymptotic trajectory which flips between the two bands: if X t lies in the
band I 1, 0

S+
at some even time, it will be found in I 1, 0

S+
(resp. I 1, 1

S+
) at all

following even (resp. odd) times.
Decreasing + towards +� , an inverse cascade of band splitting bifurca-

tions occurs. We denote +� n the point below which the regime with 2n bands
takes place: for + # [+� , +� n], the iterated map S 2n

+ admits 2n ergodic com-
ponents over which asymptotic trajectories of the variable X t run peri-
odically. Let us denote I n, _

S+
, _=0,..., 2n&1 these 2n bands with the follow-

ing convention: take the ``central'' band I n, 0
S+

% 0, and order the bands such
that

I n, _
S+

=S _
+(I n, 0

S+
)

Therefore, the action of S+ on these bands amounts to the permutation
_ � (_+1)[2n] (modulo 2n).

It is important to note that the intervals I n, _
S+

are invariant under the
map S 2 n

+ for all + # [+� , +� n] even though, approaching +� , the system
reaches regimes with more and more bands. For example, I 0

S+
is the stable
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interval of S+ , for all +, and below +� 1 , the two bands I 1, 0
S+

and I 1, 1
S+

are
defined and are subsets of I 0

S+
: if +�+� n�+� 1 , the map has 2n bands, but

I 1, 0
S+

and I 1, 1
S+

are still exchanged by S+ and all even (resp. odd) bands lie
on I 1, 0

S+
(resp. I 1, 1

S+
):

I n, 2_
S+

/I 1, 0
S+

, and I n, 2_+1
S+

/I 1, 1
S+

3.1.2. Banded States. Let us now consider the evolution of some
configuration Xt under an operator of the form 2m

g b S+ . Whenever
+ # [+� , +� n], the local map has (at least) 2n bands: we denote In, _

S+
the set

of configurations for which all variables Xr� lie on the band I n, _
S+

:

In, _
S+

=(I n, _
S+

)L

S+ operates a permutation on _, and since the operator 2m
g keeps intervals

stable, 2m
g b S+ operates the same permutation _ � (_+1)[2n]: these inter-

vals In, _
S+

constitute generalized bands in the phase space I=[&1, 1]L.
Therefore, if the configuration Xt falls on some of these intervals at

some time, it runs periodically over these 2n bands at all following times.
We call such at state of the system a banded state of order n (BSn). The fact
that the system is in a BSn does not imply that it displays a period-2n

macroscopic regime: the actual collective behavior could be of higher (mul-
tiple) periodicity, or even quasiperiodic. For example, the d=3 lattice of
coupled tent maps shown in Fig. 2 displays a period-2 behavior for +=+� 0 ,
and the two-dimensional lattice displays period-2 just above +=+� 1 : these
are banded states of order 0 since the local map has only one band.

3.2. Nontrivial Synchronization

When the local map has several bands, the coupled map system
operates a permutation on the bands In, _

S+
in the phase space: if all sites of

the lattice lie in the same band at some given time (say t=t0), they run
together periodically over the bands. of the local map. Suppose now that
not the whole lattice, but some region of the lattice l # L only has all its
sites in the same band I n, _

S+
(with, say _=0) at t0 while all other variables

lie in another band (say _=1). Inside each of these domains, the variables
follow a collective regime which resembles a BS at a mesoscopic scale.
However, different situations can occur at the boundaries: one domain can
invade the other, in which case the system converges towards a BS, or the
fronts can be blocked and clusters of different phases can coexist on the
same lattice.
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These situations are illustrated in Figs. 3�4 using a two-dimensional
lattice of coupled tent maps for +=1.4, a case in which the local map has
two bands. Starting from random initial conditions, mesoscopic regions
start flowing towards the two-band attractor: some regions of the lattice try
to follow a period-2 evolution with _=0 while the other regions converge

Fig. 3. Snapshot of a 2-dimensional lattice of coupled tent maps of size N=1282 with peri-
odic boundary conditions and +=1.4, g=0.08: (a) after a transient (b) 10000 time steps later.
A few small clusters have been eliminated while the largest structures are blocked in the space
and do not evolve any longer. Inside a cluster, the dynamics is similar to that of a banded
state: the local variables evolve chaotically while the cluster as a whole follows a period-2
regime. (c)�(d) same for g=0.1.
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to the same evolution with the phase _=1. During the first time steps of
the dynamics, clusters are formed due the indetermination on _.

For small coupling strengths (see Fig. 3), the boundaries between
these domains form walls that the coupling cannot break: the walls are
pinned to the lattice and clusters persist in the infinite-time limit. The
pinning allows for the co-existence of clusters on the same lattice and all

Fig. 4. Snapshot of a 2-dimensional lattice of coupled tent maps of size N=1282 with peri-
odic boundary conditions and +=1.4, g=0.2: (a) after a short transient (b) 1000 time steps
later. The fronts between the two phases propagate so that the small structures are eliminated.
(c)�(d) 10000 and 10001 time steps later only one phase remains.
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the possible patterns correspond to the ``ergodic components'' of the
dynamical system.

For stronger values of the coupling, the domain wall structure is
broken as illustrated in Fig. 4 for the same lattice but with g=0.2. The
comparison of the same lattice at different time-steps show that the smaller
clusters are eliminated: except for exceptional initial conditions leading to
a flat interface between the two phases, the system converges towards a
banded state, and there is a unique attractor for the collective regime.

We call non-trivial synchronization (NTS) the property that the system
reaches a BS from (almost) all initial conditions. Estimating quantitatively
the value of the coupling marking the onset of NTS is a difficult task. We
now briefly present how this can be achieved in the simple case of NTS to
a BS1. More detailed results will be published elsewhere.(13)

3.3. Estimating the Onset of NTS: Phase Ordering of
Coarse-Grained Variables

Take some + # [+� , +� 1], to insure that the local map has two bands,
and consider first the uncoupled case (g=0): each variable X t

r� evolves
independently under the local map S+ , and its trajectory reaches the
asymptotic regime where it flips between the bands I 1, 0

S+
and I 1, 1

S+
. Depend-

ing on its initial value X0
r� it falls in I 1, 0

S+
at even or odd times, and some

phase variable at _ t
r� # [0, 1] can be associated to each site. For a finite lat-

tice of N sites, N=2N�2 different patterns can be obtained, corresponding
to different ergodic components for the dynamics of the configuration Xt in
the phase space I.

The coarse-grained variables _t
r� are similar to Ising spins and the dif-

fusive coupling operator 2m
g plays the role of some ferromagnetic interac-

tion with range *=- 2gm &e� &. When g increases, sites try to synchronize,
and for strong enough coupling, isolated variables jump to the other phase
(e.g., _t

r� surrounded by _ t
r� +e� =1). For a given g>0, only clusters with a

minimal transverse size survive: a continuous family of asymptotic states
can be observed depending on the proportion of clusters in each phase, and
the number of ergodic components is expected to scale like N B exp(:N )
with the system size. Coefficient : decreases when g increases. For large
values of the coupling, say g>g1

e(+, m), no cluster persists, all sites end
up in one of the two phases and a BS1 is reached from almost all initial
condition.

The direct estimation of N is impossible in practice, although one can
easily get a flavor of the sequence of bifurcations marking the decrease of
: when g is increased. (16) It is, in fact, easier to estimate g1

e(+, m) from the

930 Lema@̂tre and Chate�



behavior of the probability of persistence of the coarse-grained variables, as
explained now.

The persistence probability is defined as the fraction Pt of phase
variables _ t

r� that have not changed their value since t=0 (modulo the
period, here two, of the local cycle):

Pt=P(\t$�t, _ t$
r� =_0

r� +t$[2])

We have performed numerical investigations of the behavior of the persis-
tence probability for + # [+� , +� 1] and m�1 aiming at estimating g1

e(+, m).
Starting from random initial conditions shared between the two bands,

if no coupling is applied (g=0), _t
r� =_0

r� +t[2] for all sites, and Pt=1 at
all times. For small but non-zero coupling, the synchronization of phase
variables with their neighbors is accounted for by a decay of Pt which
saturates at some finite asymptotic value characterizing the pinning of dif-
ferent possible clusters. If g is large enough, however, the system converges
towards a BS1, and Pt decreases algebraically to zero, similarly to the
quench of an Ising model at zero temperature.(17)

Such measurements allow for a rough evaluation of g1
e(+, m) as shown

in Fig. 5. Better estimates can be obtained by extrapolating the changes in
the scaling behavior of Pt observed at large g to g � g1

e(+, m).
The value of g1

e(+, m) decreases when + � +� : this is expected since in
this limit the tendency of the local map to separate trajectories weakens
(decrease of the largest Lyapunov of the lattice).4 An immediate conse-
quence of this observation is that there exists a maximal value for fixed m,

g1
e(m)=max

+
[ g1

e(+, m)]= g1
e(+� 1 , m)

above which the system governed by 2m
g b S+ reaches a BS1 for all

+ # [+� , +� 1] and for (almost) all initial conditions.
Similarly, g1

e(+, m) decreases when m increases, because then the
coupling is ``stronger''. Therefore, there exists a maximal value

g1
e*=max

m
[ g1

e(m)]=max
+, m

[ g1
e(+, m)]= g1

e(+� 1 , 1)

above which a BS1 is reached for all + and m.
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Fig. 5. Values of g1
e(+, m) vs + (a) and m (b) for 2-dimensional lattices of coupled tent maps

(L=512).

As we have seen, in the general case of coupled maps lattices (not
necessarily tent maps), taking the limit m � � with the appropriate rescal-
ing of the lattice mesh size &e� & B 1�- m � 0 yields the continuous limit of
the coupling operator. Since the coexistence of phases in the small coupling
regime is made possible by the pinning of localized structures on lattice
sites as illustrated in Fig. 3, we must expect this effect to disappear in the
continuous limit:

g1
e(+, m) ww�

m � �
0

932 Lema@̂tre and Chate�



Finally, in order to study this coarsening process, the ``worst'' possible
situation was considered, where the initial state is chosen so as to insure
that the competition between the two macroscopic phases goes on at all
times, thus leading to an algebraic decay of persistence. In fact, due the
asymmetry between the basins of the two ergodic components of the local
map, if the local variables are taken randomly on the interval I at time
t=0, then one phase dominates the other after a few timesteps. The
minority phase is eliminated in finite time at the macroscopic level.

3.4. Banded States When + � +� ?

Consider + # [+� 2 , +� 1]: the local map has exactly two bands, and the
multistability of the two associated phases disappears at g1

e(+). For g above
this value, the system flows towards a BS1 and, asymptotically, all sites
lie simultaneously in the same band at any given time. If, however,
+ # [+� 3 , +� 2], the local map has four bands' and local phase variables _ t

r�

take their values in [0, 1, 2, 3]. The limit value g1
e(+) is still defined, and

above it all sites fall into one of the two ``meta-bands'' I 1, 0
S+

or I 1, 1
S+

: all _ t
r�

are simultaneously either even or odd.
Suppose now that the system is in a BS1, i.e., it flips between the inter-

vals I1, 0
S+

and I1, 1
S+

. Pinned clusters can be formed inside these bands, e.g.,
between the sub-intervals I 2, 0

S+
and I 2, 2

S+
in I 1, 0

S+
and also I 2, 1

S+
and I 2, 3

S+
in I 1, 1

S+
:

according to this new coarse-graining, an infinite number of attractors can
be evidenced again. One can define a limit value of the coupling, g2

e(+, m),
above which the system converges towards a BS2 starting from any initial
conditions in a BS1. Thus, defining

g2
e*(+, m)=max(g1

e(+, m), g2
e(+, m))

for all g>g2
e*(+, m), the system converges towards a BS2 starting from any

initial condition.
One can this way define a whole hierarchy of limit coupling values

gn
e(+, m) above which a BSn is reached from any initial BSn&1. Thus the

condition for NTS is defined by

gn
e*(+, m)=max

n$�n
gn$

e (+, m)

above which a BSn is reached from any initial condition.
Understanding NTS in the limit + � +� requires to evaluate all

possible gn
e*(+, m) in order to establish some general threshold ge*(+, m)

above which NTS is observed at all orders.
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It is not clear, at this stage, whether NTS persists in this limit and
what occurs at the transition between the periodic +<+� and chaotic
+>+� regimes of the local map: how does the series gn

e* behaves when
+ � �? In fact, there are (naive) arguments against the existence of an
infinite cascade of BS since the local chaos at work among the sites is
sometimes represented as some effective noise: chaotic systems with exter-
nal noise(18) show a truncated (finite) cascade of bifurcation because the
refined structure of bands is broken by the noise near +� . This would
correspond to a situation in which, for some given g>g1

e*, although a BS1
is reached for all +<+� 1 , the smallest bands could not be separated for +
sufficiently close to +� . If this appeared to be true, a banded state of high
order could not be reached and NTS would not be achieved. The following
presentation of RG arguments will clarify these issues.

4. RENORMALIZATION GROUP FOR COUPLED TENT MAPS

The sequences of periodic behavior observed on bifurcation diagrams
like those displayed in Figs. 1 and 2 in strong-coupling regimes show
similarities with the band structure of the local map. This simple observa-
tion raises the question of the existence of some self-similarity within the
collective regimes. Since, as mentioned above, NTCB could be lost when
approaching +� , two different questions can be addressed: First, is their
some universality displayed by asymptotic banded states, whatever the
coupling, if necessary starting from adequate initial conditions? Second,
what is the asymptotic regime reached from almost all initial conditions,
and is there an infinite cascade of NTCB for sufficiently strong coupling?

The previous section intended to study the second question, but failed
to given general answer near +� , because it requires to evaluate all
gn

e(+, m) or at least to provide some upper bound for these thresholds. We
now turn to the derivation of a RG equation for coupled maps which
applies to all types of banded states and gives a precise answer to the first
question. This, in turn, provides a complete description of the phase
diagram of coupled map systems in this limit, and therefore answers the
second question.

The RG is first derived on the example of coupled tent maps in which
case calculation can be carried out exactly while the more general case of
unimodal maps is discussed afterwards.

4.1. Known Results for Single Maps

Let us first recall how the RG works in the case of the tent map. In
this simple case, the RG stems from the conjugacy between the iterated
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map S 2
+ in the two band regime with the map S+$ for some other value of

the parameter +$. This RG characterizes the self-similar structure of the
dynamical system and provides scaling exponents in the limit + � +� for,
e.g., the band-splitting points or the widths of the bands in this limit. One
can write the RG in two ways.

Centered RG. For any +>1, the second iterate S 2
+ of the tent map

S+(X )=1&+ |X |, restricted to the interval [&1�+, 1�+] reads

S 2
+ | [&1�+, 1�+](X )=1&+++2 |X |

This allows for a change of variable X $=&X�a, with &a=S+(1)=1&+:
the variable X $ is governed by the map S+$ with +$=+2 (see Fig. 6).

Whenever +$�+� 0 , the map S+$ leaves the interval I=[&1, 1] invariant.
Therefore, X transformed by S 2

+ cannot escape from the interval I*S+
=

[&a, a]. The second iterate S 2
+ of the map restricted to the interval I*S+

is
then conjugate to S+ 2 via:

S 2
+ | I*S+

=h&1
S+

b S+ 2 b hS+
(5)

with hS+
the linear transformation hS+

(X )=&X�a.
In fact, the dynamics defined by S+$ covers the interval I 0

S+ 2
/I, and

the central band I 1, 0
S+

/I*S+
is obtained via

I 1, 0
S+

=h&1
S+

(I 0
S+ 2

)

while the condition +$�+� 0=2 or +�- 2 provides the value of the first
band splitting point, +� 1=- 2.

Fig. 6. Iterated tent map S 2
+ for +=1.4, with indication of the intervals I*S+

and I*$S+
.
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Since this relation identifies the iterated map with the tent map itself,
the process can be repeated. It shows that S+ exhibits a self-similar cascade
of band-splitting points +� n=- +� n&1 below which regimes with more than
2n bands are observed. When n � �, the points +� n= 2n

- 2 converge to the
fixed point +�=1 of - and for large n, the points +� n converge to +� like
+� n&+�t$&n which defines the Feigenbaum constant (or the bifurcation
velocity) (here $=2).

Noncentered RG. A conjugacy is also verified for S 2
+ on the interval

I*$S+
=[2�+&1, 1]. This relation reads,

S 2
+ | I*$S+

=h$&1
S+

b S+ 2 b h$S+
(6)

for the same parameter +$=+2 as in the centered version, while h$S+
(X )=

(X&1�+)�(1&1�+) and I*$S+
=h$&1

S+
([&1, 1]). The band I 1, 1

S+
is obtained via

I 1, 1
S+

=h$&1
S+

(I 0
S+ 2

)

Equation (6) is a non-centered RG equation.

4.2. RG for Coupled Maps

Let us now consider coupled tent map dynamics governed in the
general case by an operator of the form 2m

g b S+ . In the spirit of the deriva-
tion of a RG for single maps, we are led now to study the iterated operator
(2m

g b S+)2 restricted to one of the intervals I*S+
or I1, 1

S+
in the phase space I.

Such an approach requires the single assumption that the system is in a
BS1 and concerns all values of the parameter + # [+� , +� 1] to insure that
the system remains in a BS1 at all times. This situation is encountered
either because the coupling in sufficiently strong so that the system flows
towards such a BS1 for almost all initial condition��g�g1

e(+, m)��, or
simply because adequate initial conditions have been chosen, whatever the
coupling strength.

4.2.1. Centered RG

Commutation. Take some + # [+� , +� 1]; the iterated operator
(2m

g b S+)2 restricted to the interval I*S+
is simply written

(2m
g b S+)2 | I*S+

=2m
g b S+ | IS+

1, 1 b 2m
g b S+ | I*S+

(7)
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to emphasize that at the second application of S+ only the restriction of the
local map to I 1, 1

S+
is involved. This is an essential remark, because I 1, 1

S+
/

[0, 1] hence,

S+ | IS+
1, 1(X )=1&+X

is linear,5 and consequently the operator

S+ | IS+
1, 1(X)=1&+X

commutes with 2m
g :

2m
g b S+ | IS+

1, 1=S+ | IS+
1, 1 b 2m

g (8)

This essential remark permits to write

(2m
g b S+)2 | I*S+

=22m
g b S2

+ | I*S+
(9)

where the iterated operator is expressed also in the form of coupled maps
evolving under a iterated local map S 2

+ and with a longer-range coupling.
Recalling now the centered RG (5) for the local map and linearity

of hS+
, it comes

(2m
g b S+)2 | I*S+

=h&1
S+

b 22m
g b S+ 2 b hS+

(10)

This relation states that in the two-band regime, the dynamics under an
operator 2m

g b S+ observed every other timestep is equivalent (conjugate) to
another coupled system, 2m$

g b S+$ , with a longer-range coupling m$=2m,
and parameter value +$=+2. It is an exact RG equation for coupled tent
maps in the space of parameters (+, m).

In the case of globally coupled maps (d=�), iterating the coupling
amounts to increasing the coupling strength:

2m
g =21&(1& g) m (11)

therefore the RG operates in the parameter space (+, g) and g$=1&
(1& g)2. However, this is not true in the general case, and certainly not for
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CMLs: previous attempts to derive a RG for CMLs were looking towards
a RG in this parameter space (+, g). The calculation above shows that the
RG is naturally written in the space (+, m).

In the case of the continuous field operator 2�
* , the RG can be

derived either by performing a similar calculation or taking the continuous
limit (m � � and &e� & B 1�- m � 0) in Eq. (10):

(2�
* b S+)2 | I*S+

=h&1
S+

b 2�
* - 2 b S+ 2 b hS+

(12)

In this case, it operates in the parameter space (+, *) and maps * onto
*$=* - 2.

4.2.2. Noncentered RG. A RG equation can also be derived on
the band I1, 1

S+
. However, if the operator (2m

g b S+)2 is restricted to this band,
the commutation (8) leads to 2m

g b (S+)2 b 2m
g . It is more appropriate in this

case to consider the operator (S+ b 2m
g )2 which can be viewed as a coupled

system observed just after the application of the map and not just after the
coupling step. This does not change the dynamics of the mean M t while the
pdf are compared at intermediate time steps. For these operators the com-
mutation yields:

(S+ b 2m
g )2 | IS+

1, 1=S2
+ b 22m

g | IS+
1, 1 (13)

Recalling the RG (6) for the local map and linearity of the transformation h$+ ,
it comes

(S+ b 2m
g )2 | IS+

1, 1=h$&1
S+

b S+ 2 b 22m
g b h$S+

(14)

It is worth noting that the RG does not take the same form on both
bands. Previous approaches relied on a commutation between the operators
2g and S+ under assumptions of weak coupling or as a perturbation
approach of a synchronized state, disregarding the properties of the bands
of the local map.(9) Therefore they could not distinguish the bands on
which it is possible to make this commutation from the central band where
this is certainly not permitted. This distinction leads to the different expres-
sions of the RG.

4.3. Universality

A RG is an powerful tool, and its existence for coupled maps has
numerous consequences. We now describe some of these consequences.
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4.3.1. Validity. Universality emerges from the group structure
which stems from the conjugacy between coupled dynamics and their
iterates. Consequently, the validity of universality properties holds if one
can insure that this approach can be iterated: in the case of coupled maps
this requires that the system reaches banded states of increasing order
when + � +� . Although this can be guaranteed by an appropriate choice
of initial conditions, e.g., restricting initial values to smaller and smaller
intervals,6 this is not satisfactory in all generality and may appear as a
strong impediment to the applicability of a RG approach to coupled maps.
In fact, the RG itself provides a simple answer to this difficulty.

Let us first recall that the RG equation (10) relies on the single
assumption that the system is in a BS1 for some + # [+� , +� 1]. Whenever
g>g1

e(+, m) such a BS1 is reached from the most general initial conditions
under the discrete-space dynamics 2m

g b S+ .
Consider now that the system is in a BS1 for some appropriate value

of the parameter + and for any g: applying the RG relation (10) establishes
the conjugacy between (2m

g b S+)2 | I*S+
and 22m

g b S+ 2 . Suppose now that, in
fact, + # [+� , +� 2], i.e., +2 # [+� , +� 1]: the system 22m

g b S+2 reaches a BS1
whenever g>g1

e(+2, 2m). This BS1 is equivalent to a BS2 for 2m
g b S+ , which

is reached whenever g>g2
e(+, m). Thus,

g2
e(+, m)= g1

e(+2, 2m)

which expresses the threshold g2
e(+, m) in terms of g1

e(+, m) by use of the
RG. This argument is easily generalized to any n. Iterated, it provides a
complete description of the different thresholds gn

e :

gn
e(+, m)= g1

e(+2 n&1
, 2n&1m)

In particular, since all g1
e(+, m) have a maximal value g1

e(m)= g1
e(+� 1 , m)

for any fixed m, and using the fact that gn
e(+, m) decreases with m, we have,

for all n and +, gn
e(+, m)�g1

e(m). Consequently, for any given m and
g>g1

e(m), independently of initial conditions, the RG can be applied at all
orders, and an infinite cascade of BSs is observed when + � +� . In par-
ticular, the maximal value of all g1

e(m) is g1
e = g1

e(1). Moreover, since
g1

e(+, m) � 0 when m � �, g1
e(�)=0 in the case of the continuous limit

and a BS of maximal order is always reached.
Consider now some g<g1

e(m): since g1
e(+, m) � 0 when + � +� (see

Fig. 5), there exists a value +1
e(g, m) of the parameter + for which

g1
e(+1

e(g, m), m)= g
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Since g1
e(+, m) is a increasing function of +, a BS1 is reached by the system

2m
g b S+ for all +<+1

e(g, m). The same can be said of any critical curve
gn

e(+, m) since all gn
e(+, m) � 0: there exists a value +n

e(g, m) such that
g= gn

e(+n
e(g, m), m). Below +n

e(g, m), a BSn is reached starting from any
BS(n&1). Therefore, below

+n
e*(g, m)=min

n$�n
+n$

e (g, m)

a BSn is reached from any initial condition. In other words, for any given
n>0, when + � +� , there always exists some + sufficiently close to +�

to ensure that a BSn is reached. When + decreases, the system passes
first through regions of multistability, but after having crossed the max-
imal curve gn

e*(+, m), it undergoes a full cascade of banded states. These
results establish recursively the relevance of the RG approach in all cir-
cumstances.

4.3.2. Scaling An immediate consequence of the RG equation (10)
is that CML 2g b S+� 1

in a banded state at +� 1 corresponds to the CML
22

g b S+� 0
at +� 0 . More precisely, in a BS1, the behavior of 2g b S+� 1

considered
every other timestep (when the system lies on the central band) is equiv-
alent to that of CML 22

g b S+� 0
considered every timestep. Figure 7(b) dis-

plays pdf pt observed in the period-2 regime for a two-dimensional lattice
of coupled tent maps. The pdf on the left lies on the central band, and,
transformed by the RG, it collapses with the pdf of Fig. 1(b) corresponding
to the fixed-point regime for m=2 at +� 0 .

The same comparison can be performed at all points +� n for 2g b S+� n
and 22 n

g b S+� 0
at +� 0 . Since in two-dimensional lattices, for +=+� 0 , a fixed-

point regime is reached for all m, a period-2n is reached at every +� n . In the
case of three-dimensional lattices (see Fig. 8), a period-2 collective regime
is reached for all m at +� 0 : consequently, period-2n+1 is reached at every
band splitting point +� n .

The RG does not predict the behavior displayed by 2m
g b S+ on the

interval [+� 1 , +� 0]; however, it relates the behavior of these systems on all
other intervals [+� n+1 , +� n] of the parameter + to the behavior observed on
[+� 1 , +� 0]. This approach is valid whatever the space dimension and the
regimes observed for + # [+� 1 , +� 0] (fixed-point, periodic, quasi-periodic,...).
In higher dimensions, the behavior displayed + # [+� 1 , +� 0] can change
qualitatively for different (small) values of m, and there is no numerical
evidence of what is the behavior displayed in the continuous limit. In these
cases, the behavior observed on small-n bands also show qualitative
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Fig. 7. Democratically-coupled (g=0.2) tent maps on a d=2 lattice of linear size L=2048
with periodic boundary conditions: (a) bifurcation diagram of Mt=(X)t (filled circles) super-
imposed on that of the local map S+ (small dots). The [+� , +� 1]� I 1

+� 1
and [+� , +� 2]�I 2

+� 2

regions are shown. For coupled tent maps, these regions transformed by the RG coincide with
the bifurcation diagrams of 22

g b S+ and 24
g b S+ , themselves indistinguishable from the whole

figure. (b): period-2 collective cycle at +=+� 1 for m=1; the distribution in the rectangle (even
time steps) is transformed exactly by the RG onto that for m=2 at +=2 displayed on
Fig. 1(b).
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Fig. 8. Democratically-coupled (g=1�7) tent maps on a d=3 lattice of linear size L=128
with periodic boundary conditions: (a) bifurcation diagram of Mt=(X)t (filled circles) super-
imposed on that of the local map S+ (small dots). The [+� , +� 1]� I 1

+� 1
and [+� , +� 2]�I 2

+� 2

regions are shown. For coupled tent maps, these regions transformed by the RG coincide with
the bifurcation diagrams of 22

g b S+ and 24
g b S+ , themselves indistinguishable from the whole

figure. (b): period-4 collective cycle at +=+� 1 for m=1; the distribution in the rectangle (even
time steps) is transformed exactly by the RG onto that for m=2 at +=2 displayed on
Fig. 2(b).
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changes other than the period-doubling implied by the RG. However, in
any case, the RG implies that there exists an infinite cascade of ``period-
doubling'' phase transitions for the collective behavior of these CMLs (the
term ``period-doubling'' being understood in a broad sense).

In the space-continuous limit governed by 2�
* b S+ , changing *

amounts to a mere reseating of space: the system is invariant under the
symmetry * � :* and r� � :r� . Therefore, multiplying * has no non-trivial
effect on the collective behavior: quantities like the instantaneous pdf pt are
not affected at all while the correlation functions are simply resealed in
space. Therefore, the RG (12) implies that system (2�

* b S+)2 has exactly the
same behavior as 2�

* b S+ 2 , but with all lengthscales multiplied by ;=- 2.
In particular, the scaling laws displayed by 2�

* b S+ are those of the local
map with plus the divergence of lengthscales ruled by ;. The existence of
a phase transition point +c

1 in the interval [+� 1 , +� 0]��and there must be
one, since the behavior at +� 1 has twice the periodicity of the behavior at
+� 0 ��implies, by similarity, the existence of an infinite cascade of phase
transition points +c

n related by the RG.
In the case of usual discrete-space CMLs, iterating RG equation (5)

shows that, near +� , the system 2m
g b S+ is equivalent to a system on

[+� 1 , +� 0] with a longer-range coupling (22 nm
g b S+$) i.e., it is closer to a con-

tinuous field map. Therefore, the scaling properties of CMLs are in fact
governed by Eq. (12) and rely on the existence of a well-defined continuous
limit for the collective behavior. In particular, for the sub-harmonic
cascades observed in 2 and 3 dimensions, the phase transitions at +c

n are
critical points of Ising-like phase transitions, (14) characterized by the
divergence of the correlation length. The scaling properties observed in
the critical region around these points are not expected to depend on the
coupling range m. Therefore, the regions around the critical points +c

n

are expected to all show the same scaling properties, and their values
must scale like the band-merging points +� n i.e., with, in particular, the
Feigenbaum constant $ of the local map.

5. RENORMALIZATION GROUP FOR COUPLED
UNIMODAL MAPS

Let us now turn to the more general case when the local map is given
by Eq. (2) with =>0. We first review briefly how the RG applies to these
maps, then, using as a guideline the exact calculation performed for the
tent map, we study how the RG can be written in the general case of
coupled unimodal maps.
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5.1. Single Maps

5.1.1. An Example: The Logistic Map. Let us take the example
of the logistic map, S+(X )=1&+X 2, and write,

S 2
+(X )=1&++2+2X 2&+3X 4 (15)

in this case, S 2
+ is a polynomial of order 4. Clearly, if polynomial maps of

the form

S+(X )=1&+(1)X 2&+ (2)X 4 } } }

are considered, with a more general definition for the parameter + as the
sequence +=(+(1), +(2),...), the RG transformation operates on these
sequences +: like in the case of the tent map (Eq. (5)), it relies on the exist-
ence of a conjugacy between S 2

+ restricted to a band and a map S+$ for
another parameter value +$.

Keeping only second order terms in the rhs of Eq. (15) provides the
simplest approximation of the RG for the logistic map, X $=X�(1&+) and
+$=2+2(1&+) which allows for an estimation of the Feigenbaum con-
stants.(6)

5.1.2. Doubling Transformation. In order to tackle the general
case of coupled unimodal maps, we now adopt a more formal point of view
on the RG following Collet and Eckmann.(1)

Let us denote 0 the space of symmetric, unimodal maps S of the inter-
val [&1, 1] with the normalization condition that the maximum (reached
for X=0) equals 1. For a given map S # 0, the bounds of the invariant
intervals are the iterates of X=0. Let us define,

a=&S(1), b=S(a) and c=S(b)

The map S has two bands whenever 0<a�b and c # I*S=[&a, a],
because the intervals I 1, 0

S =[&a, c] and I 1, 1
S =[b, 1] are then exchanged

by S, and I 1, 0
S /I*S . The RG stems from the observation that I*S is stable

by S 2, and the map &S 2 restricted to I*S is again unimodal with a maxi-
mum at X=0. An appropriate linear change of variables transforms S2 | I*S
into a normalized unimodal map T[S] # 0:

S2 | I*S
=h&1

S b T[S] b hS
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with hS(X )=&X�a. The doubling transformation T operates in the space 0
of such maps and the geometric properties of the operator T as a dynami-
cal system acting in 0 determines the universal properties of the local
map.(4) In the case of the tent map, T[S+]=S+ 2 .

Let us recall the main results of this approach. Transformation T has
a fixed-point 8 and the derivative of T at the point 8 has a simple eigen-
value which is larger than one, which turns out to be the bifurcation
velocity, $. This fixed point verifies the relation 8(X )=&:8 b 8(&X�:)
which defines the reduction parameter :=&1�8(1), characterizing the
shrinking of the bands near +� . The unstable manifold Wu of T is one-
dimensional, and the stable manifold Ws has codimension-one.

Let us denote 7a the codimension-one surface 7a=[S : S(1)=&a],
and 8a* the intersection of Wu with 7a . The inverse images of a surface 7a

by the doubling transformation are denoted,

7 (n)
a =T &n[7a]

and 7 (0)
a =7a . When T &1 is iterated, these surfaces accumulate to the

stable manifold at the transversal rate $&1.
A family of maps + � S+ can be regarded as a curve which crosses the

stable manifold Ws at the point S+�
. For the different maps considered, the

point +� 0=2 corresponds to the case when the image set of the map is the
whole interval [&1, 1], i.e., S+� 0

(1)=&1, and therefore by definition,
S+� 0

# 71 . The band-splitting points +� n correspond to the same property for
their images: T n[S+� n

] # 71 or equivalently, S+� n
# 7 (n)

1 . Therefore the maps
S+� n

are the intersection of the curve + � S+ with the surfaces 7 (n)
1 . This

shows that the points +� n converge to +� at the velocity $. Moreover when
n � �, the sequence T n[S+� n

] converges to the universal map 81* which lies
on the unstable manifold Wu , while the sequence T n[S+�

] # Ws converges
to 8.

5.2. Maps on Phase Space

Let us now turn to the general case of coupled unimodal maps of the
form 2 b S. Multivariate maps have been studied in ref. 19, where it is
shown in some cases that a doubling transformation can be defined which
guarantees the existence of universal properties. However, it is especially
relevant to our problem to find a relation between this universality, the
extension of the coupling and the universality of the single map.

945Renormalization Group for Strongly Coupled Maps



In the case of coupled tent maps, the derivation of the self-similarity
relation (10) relies on the possibility to let the operators 2 and S commute
in the expansion (7) of (2 b S)2. In the general case, the commutation rela-
tion (8) does not hold because the local map is not linear on the interval
I 1, 1

S ; therefore, the iterated operator restricted to a stable interval cannot
be written in the same form (linear coupling composed with a local non-
linear map). However, the focal map is invertible on I 1, 1

S precisely because
the only point where it is locally non-invertible lies on the central band (by
definition). Invertibility guarantees that the operators 2 b S and S b 2
restricted to I 1, 1

S are conjugate to each other. This conjugacy can be seen
as an extension of the notion of commutation.

The invertibility property and the consequent conjugacy are at the
core of the existence of a RG in the general case; it allows to write,

(2 b S)2 | I*S
=(2 b S | I S

1, 1 b 2 b S | &1
I S

1, 1) b S2 | I*S

which resembles usual coupled maps systems with the local map S2 but
with a non-linear transformation in place of the coupling operator. We
show in the following that such nonlinear transformations can be viewed as
coupling operators. Embedding the usual linearly coupled maps in a larger
space to let the coupling stage incorporate some kind of nonlinearity, the
procedure sketched here defines a doubling transformation.

To this aim, more general coupled maps are thus considered, of the
form Q b S, where Q itself is a nonlinear operator. Both S and Q being non-
linear might seem confusing: the question arises of the uniqueness of such
a decomposition. We argue now that given any unimodal map on I, there
is a unique way to write it in the form Q b S. This indicates that the non-
linearities of these two operators are of different nature and play different
roles, and guarantees that such systems are well defined.

5.2.1. Canonical Representation. Let us define some space ;
of (continuously differentiable) normalized unimodal maps X � 9(X) on
the phase space I=I L (For simplicity the index set L can be supposed
finite). These maps are taken symmetric (for all Xr� � &Xr� ), homogeneous
and isotropic to respect the symmetries of the index set L. Partial maps

Xr� 2
� [9(X)]r� 1

may be defined, for Xr� 2
varying and Xr� fixed for all r� {r� 2 (in particular, if

there is no dependence induced by 9 between the sites r� 2 and r� 1 , this map
is flat: such maps are considered as a limit case of unimodal maps).
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Unimodality of the map 9 is defined as the unimodality of all partial maps
for all r� 2 , r� 1 # L; the absolute maximum for 9 is obtained at the configura-
tion X=0. and the normalization condition reads

9(0)=1

Let us denote Isyn , the synchronous manifold, i.e., the set of configura-
tions where all sites take the same value: Xr� =X, for all r� # L. The image
of some synchronized state X # Isyn by a unimodal map 9 is again syn-
chronized because of homogeneity. The common value of all sites in the
image lattice 9[X] is denoted P[9](X ) Considering all possible values
X # I, P[9] is a normalized, symmetric, unimodal map on I: it is called
the reduced map of 9. Note that, in the case of linearly coupled maps,
9=2 b S the reduced map is necessarily P[2 b S]=S.

The reduced map is unimodal with its maximum at 0, and therefore
it is invertible from the interval I +=[0, 1] to I 0

P[9]=[&a, 1] (with
a=&P[9](1)); thus, the operator P[9] transforms the interval I+ of
configuration with only non-negative values to the whole invariant interval
I0

9 , where the dynamics takes place. This allows to define

Q[9]#9 b (P[9])&1

on I0
9 , and to write, in all generality,

9=Q[9] b P[9] (16)

to emphasize the coupled manlike structure of unimodal maps in the
general case. It is equivalent to take the inverse of the reduced map on
I&=&I+ due to the symmetry X � &X. If 9=2 b S, then Q[9]=2,
P[9]=S and the decompositions amounts to the definition of the map.

The reduced map P[9] can be seen as a mean-field version of 9: it
accounts for the global transformation applied to a site when setting aside
the effects of the other variables (precisely, these effects have been canceled
out by taking all the sites synchronized). The operator Q[9] accounts for
the effects of other sites added to this mean-field transformation. It contains
no local evolution by itself (its reduced map is the identity) or equivalently,
it admits all synchronized states X # Isyn for fixed points. In this sense,
Q[9] is a pure coupling operator, although it is not linear in general.

For any given local map S # 0, S is an uncoupled map on I. Let us
denote 0 the space of such uncoupled maps. The canonical decomposition
presented above shows that any map 9 # ; can be written as the com-
position of some S # 0 with a ``coupling'' operator. This property can be
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written formally as ;=;$ b 0 where ;$ denotes the space of coupling
operators. Now, the definition of ; should be completed by some assump-
tions, and clearly, these assumptions concern in fact the space ;$.

Although the coupling operator Q[9] already appears as a com-
plicated object, this decomposition shows that under general assumption,
there is a unique way of defining a coupled map form for 9, and in par-
ticular a unique possible local map.

5.2.2. Nonlinear Coupling Operators. We consider coupled
map dynamics of the form 9=Q b S, where Q # ;$ is taken regular so that
the differentiability of 9 is determined solely by the local map. The tangent
operator for 9 is defined by the functional derivative,

$9[X]r� 1

$Xr� 2

=
$Q[X]r� 1

$Xr� 2

S$(Xr� 2
)

and the form of 9 near a maximum is naturally characterized by the expo-
nent = of the local map as defined by (2).

Other requirements (analogous to properties (1)�(3)) for 9 concern
the operator Q # ;$. Roughly speaking, theses properties should insure that
Q behaves as expected from a diffusive coupling operator (DCO) in the
most general case: basically, Q should drive all configurations towards the
synchronous manifold, and make all volumes in phase space shrink to the
line Isyn . In the case where the coupling operator Q=2 is linear, properties
(1)�(3) are expressed via the kernel

D(r� 1&r� 2)=
$ 2[X]r� 1

$Xr� 2

which is constant over I and only depends on the difference r� 1&r� 2 . For
nonlinear couplings, these properties should be reinterpreted in terms of
the tangent operator $Q�$X.

However, the nonlinear DCOs that are relevant to our problem can be
given a simple description. Given a linear diffusive transformation 2 with
a kernel D and a coupling length *, let us consider the operator Q=h&1 b
2 b h where h is some smooth change of variables. This operator is con-
jugate to 2 and therefore has an action on phase space which resembles
that of a linear DCO. It is homogeneous and accounts for the same lattice
symmetries as 2; it drives all configurations towards the synchronous
manifold. Since h does not induce any correlation between sites (it is purely
local), the interaction between sites is completely governed by 2. In
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particular, the asymptotic (long time) behavior under Q is determined via
Qn=h&1 b 2n b h, and is completely characterized by 2.7

Finally, the composition of such nonlinear diffusive coupling operators
is also a diffusive coupling operator since it is nothing else than a (possibly
complicated) way to drive a system towards complete synchronization.
Such an operator is in general written as

Q=h&1
1 b 21 b h1 b } } } b h&1

N b 2N b hN

for some invertible hi 's and linear couplings 2i 's. It means that when Q is
applied, the system is driven towards synchronization by following the 2i 's
in different systems of coordinates. In particular, the tangent operator of Q
on Isyn is 21 b } } } b 2N , which defines uniquely the diffusion constant by
*2=7i*2

i . By construction, the space ;$ of such operators is invariant by
composition (which adds up the diffusion constants) and by applying some
change of variable (which keeps the diffusion constant invariant).

It is essential to note that all intervals are stable by all Q # ;$, while
all volumes shrink. These operators drive all configurations to the syn-
chronous manifold and they are characterized by their tangent operator
at Isyn which accounts for the strength of the coupling and its spatial
extension.

5.3. Doubling Transformation

5.3.1. Definition. The application of the doubling transformation
to some map 9=Q b S # ; is now straightforward. When the reduced map
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7 In fact, the derivative of Q at any configuration X reads

$Q[X]r� 1

$Xr� 2

=
h$(Xr� 2

)

h$([h&1 b 2 b h(X)]r� 1
)

D(r� 1&r� 2)

and depends on X, although it is constant on Isyn where it is equal to D. The symmetry r� 1
r� 2 , and the invariance by translation are not respected by this operator, by they are
recovered by considering its spatial average ($Q�$X). This tangent operator accounts for
the dependence of an image site on its antecedents. In all cases, $Q�$X is non-negative since
h$ does not change sign, and the kernel D is non-negative. The range of this dependence is
measured on $Q�$X by a quantity of the form

| (r� 1&r� 2)2
$Q[X]r� 1

$Xr� 2

dr� 1 dr� 2=| \� 2 �$Q
$X� (\� ) d\�

which remains bounded provided that |h$| verifies m�|h$|�M for some M, m>0. The
assumption on bounds for |h$| is stronger than just invertibility. It insures that the nonlinear
coupling operator works in an normal diffusive manner at all points in phase space. It will
be always verified in this work.



is in a two-band regime, it exchanges the intervals I*S=[&a, a] and
I 1, 1

S =[b, 1]. The coupling operator Q is nonlinear ( # ;$) and keeps inter-
vals invariant: it guarantees that the two disjoint intervals I*S=[&a, a]L

and I1, 1
S =[b, 1]L are exchanged by 9 and stable by 9 2. Thus 9 2 can be

restricted to I*S and reads,

92 | I*S
=Q b S | IS

1, 1 b Q b S | I*S

Considering 92 on Isyn shows that its reduced map is S2 and, using the
invertibility of S on I1, 1

S , it comes

92 | I*S
=(Q b S | I S

1, 1 b Q b S | &1
IS

1, 1) b S2 | I*S

Applying the linear change of variable hS(X)=&X�a yields

92 | I*S
=h&1

S b 3[9] b hS

which defines the doubling transformation in ;:

3[9]#3$S[Q] b T[S] (17)

where T[S] denotes the uncoupled map which transforms each local
variable by T[S] while

3$S[Q]#hS b (Q b (S | IS
1, 1 b Q b S | &1

I S
1, 1)) b h&1

S (18)

defines the action of the doubling transformation on the space ;$ of non-
linear coupling operators.

We have shown that there exists a unique way to define the doubling
transformation, and that it respects, in any case, the RG of the local map.
This strong property stems from the uniqueness of the reduced map, for a
given unimodal map on the phase space.

When the doubling transformation is applied to map 9, its reduced
map is transformed by the local doubling transformation T on 0 (3 and
P commute) and when 9 follows the flow of 3 in ;, P[9] follows the
flow of T in 0. Taking the local map in the stable (resp. unstable) manifold
of the local RG shows that the manifolds ;$ b Ws/; (resp. ;$ b Wu) are
invariant by 3.

Similarly, the univoque definition of a diffusion constant for the DCO
that we consider, shows that, under the doubling transformation, the diffu-
sion constant doubles i.e., the coupling length is multiplied by ;=- 2. This
property was already found for coupled tent maps, and appears to be
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directly related to the ``synchronously updated'' form of the evolution
operator. It must also be accompanied by a decay of the lattice mesh size,
&e� &: the lattice converges to a continuous limit.

However, the precise action of the doubling transformation on DCOs
in the space ;$ is complicated and ``coupled'' to the local RG. Iterating (18)
shows that 3$n involves the different iterates of the local map under T. In
some sense, the dynamical operator 3$ depends on the ``time'' n when
iterated. However, when the local map, iterated by the RG, converges to
some universal map, the operator 3$ also converges and the existence of
some limit behavior for the coupling operator arises from the properties of
this asymptotic 3$.

Let us consider the case when the local map is the fixed point 8:

3[Q b 8]#3$8[Q] b 8

and accompany the doubling transformation with the rescaling &e� & � &e� &�;.
Under this transformation, the coupling length * is unchanged. It is an
open question to determine whether there exists, like in the case of coupled
tent maps, a universal operator Q�

* verifying the fixed point relation:

h8 b (Q�
* b (8 | I 8

1, 1 b Q�
* b 8 | &1

I 8
1, 1)) b h&1

8 =Q�
*;

In the case of linearly coupled tent maps, this equation reduces to the
equality,

(Q�
* )2=Q�

*;

which is verified by 2�
* . But, in general, the existence of such a limit is not

proven.

5.3.2. Qualitative Universality

Limits of NTS. The application of the doubling transformation relies
on the assumption that the system is in a BS. The RG can be iterated inde-
pendently of initial conditions provided that the system reaches BSs of
increasing order when + � +� . Like in the case of coupled tent maps, the
generality of this approach stems from the observation that taking + � +�

amounts to a strengthening of the coupling and guarantees that, for suf-
ficiently strong coupling, there is an infinite sub-harmonic cascade of phase
transitions. Let us now detail this argument. We consider a lattice of non-
linearly coupled maps, 9=Qq b S+ : this could represent a CML of the form
2m

g b S, where the two parameters m and g of the original coupling operator
are encoded by the ``strength'' q.
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For +�+� n , a BSn is reached from almost all initial conditions in a
BS(n&1) whenever the coupling strength is larger than the limit value
gn

e(9). If moreover +�+� n+1 , the map T[S+] has 2n bands, and the system
3[9] reaches a BSn for g>gn

e(3[9]): this situation corresponds to a
BS(n+1) in the 2n+1-band regime of S+ , hence

gn+1
e (9)= gn

e(3[9])

Let us denote Q (n)
q b Tn[S+] the successive images of 9=Qq b S+ by the

doubling transformation. From the definition (18) of doubling transforma-
tion 3$ for DCOs, Q (n+1)

q is a ``stronger'' coupling than Q (n)
q in the sense

that it makes the volume of the phase space shrink even more. Conse-
quently, for any fixed local map S with at least two bands, the system
Q(n)

q b S reaches banded states more easily with n increasing, hence
g1

e(Q (n)
q b S) decreases with n. Moreover, when n � �, the coupling length

diverges at a fixed mesh size (i.e., the ratio *�&e� & diverges like ;n) taking
&e� &B;&n shows that for large n, Q (n)

q corresponded to a coupling operator
for a continuous field without even knowing precisely the behavior of Q (n)

q

in this limit. Therefore, the discretization of the lattice disappears, there is
no possible pinning of clusters to allow for the co-existence of phases and
g1

e(Q (n)
q b S) is expected to vanish:

g1
e(Q (n)

q b S) ww�
n � �

0 (19)

If the system is considered, e.g., at all +� n , the property (19) added to
the fact that the sequence Tn[S+� n

] converges to 81* shows that the
sequence

gn
e(Qq b S+� n

)= g1
e(Q (n)

q b Tn[S+� n
])

vanishes in the limit n � �; in particular it is bounded above which shows
that by an appropriate choice of the coupling strength q, i.e., the strength
and�or the extension of the DCO 2m

g , the sub-harmonic cascade of banded
states is infinite. In this strong-coupling limit, coupled maps exhibit their
universal behavior.

Illustration. The RG is illustrated in Fig. 9 on the case of democrati-
callycoupled logistic maps on a 2-dimensional lattice. Period 2n is observed
at the points +� n , i.e., for 9=2g b S+� n

: these regimes correspond to fixed
points for 3n[2g b S+� n

]. When n increases, the reduced map of these
operators follows the local RG and therefore converges to the universal
map 81*.
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These distributions were evaluated by the direct simulation of 2g b S+� n
,

and the measure of the pdfs when the system lies on the central band,
followed by a simple resealing. These pdfs pn are displayed on Fig. 9(d)
where it is clear that they admit a well-defined limit when n � �. This limit
does not necessarily corresponds to the existence of a limit for the coupling
operator iterated by 3$ and involving all Tn[S+� n

]: it is the macroscopic
motion produced by the operators of the form Q (n)

q b 81* which admit a
well-defined limit when n � �.

5.4. Metric Properties

In the case 9=2 b S+ , for a family of unimodal maps, the bands
shrink when the parameter + approaches +� . On these bands of decaying
width, the local map (which is invertible on each of these bands) can be
approximated by its tangent: in this linear approximation, the commuta-
tion of operators 2 and S+ can be performed, thus yielding to the same
doubling transformation as for coupled tent maps.

5.4.1. Commuting Doubling Transformation. Let us first
define a ``commuting'' doubling transformation for which the commutation
is performed a priori :

3c[Q b S]#Q2 b T[S] (20)

We then intend to compare the transformations 3 and 3c near the point +� .
Denoting

3c[2 b S]#3$c[2] b T[S]

and

3$c[2]#22

allows to separate 3c into the local RG transformation T and the spatial
RG transformation 3$c . This is the same RG as for coupled tent maps. The
situation is thus particularly simple: when the commuting doubling trans-
formation is iterated, the coupling converge to the family of universal
operators 2�

* while the local map follows its own RG flow.

5.4.2. Asymptotic Equivalence. In order to quantify the differ-
ence between the actual RG of some unimodal map, and the commuting RG,
let us first estimate the commutator

[2, S]=2 b S&S b 2
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Fig. 9. Two-dimensional lattice of democratically coupled (g=0.2) logistic maps. (a): Bifur-
cation diagram of Mt (circle) compared with the bifurcation diagram of the single logistic
map; the [+� , +� 1]�I 1

+� 1
and [+� , +� 2] �I 2

+� 2
regions are shown. (b)�(d): Asymptotic regime

for the single-site pdf pt. (b): stationary state at +=2 for 1�m�32: they converge towards
the pdf for the continuous limit. (c): period-2 collective cycle at the first band-splitting point
+=+� 1 ; the distribution in the rectangle corresponds to the times when all sites lie on the
central band and is reported on (b) (dashed) after renormalization. (d): Period-2n is found at
all points +� n and the renormalized pdfs on the central band converge.
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Fig. 9. (Continued )

of 2 and S applied to some configuration X. For this purpose, each local
variable is written

Xr� =(X) +xr�

where the field x has been introduced which measures the local departure
from the mean-field M=(X) . A Taylor expansion of the local map
around M reads,

S(Xr� )=S(M )+xr� S$(M )+
(xr� )

2

2
S"(M )+ } } }
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for the configuration X. Similarly, for 2(X)=M+2(x), it reads,

S([2(X)]r� )=S(M )+[2(x)]r� S$(M )+
([2(x](r� ))2

2
S"(M )+ } } }

Applying 2 to the first of these equations, and performing the difference,
only the second order terms remain and it comes

[2, S](X)= 1
2 [2(x2)&[2(x)]2] S"(M )+ } } }

If moreover, the histogram of all sites in the configuration X lies on an inter-
val IX of width 'X , the rhs of this equation is dominated by '2

X maxIX
|S"|�2,

and

&[2, S](X)&=O('2
X max

IX

|S"| )

where the norm &X&=max Xr� has been introduced. This allows to estimate
the error made when applying the commuting doubling transformation.
When the operator

(2 b S)2&22 b S2=2 b [S, 2] b S

is evaluated on some configuration X # I*S , the commutator [S, 2] is
estimated on the configuration S(X). If + � +� , the bands shrink and
become small compared to the interval I*S : the state S(X) lies on an interval
IS(X)/I 1, 1

S which is much smaller than the ``meta-bands'' I*S or I 1, 1
S . Denot-

ing '+ the average width of the bands +, '+ � 0 when + � +� . Moreover
the second derivative of S which appears in the commutator only involves
values in I 1, 1

S , and maxIS
1, 1 |S"|=O(=). This provides the estimate

&[(2 b S)2&22 b S2](X)&=O('2
+=)

This result should be compared to fluctuations of the local values in the
configuration X itself, measured by &x&=&X&M& which is of order '+ : it
comes,

&[(2 b S)2&22 b S2](X)&
&X&M&

=O('+=)

Therefore, after performing the linear change of variables hS X � &X�a+

(a+=1&+), it comes,

&3[2 b S](X)&3c[2 b S](X)&
&X&M&

=O('+ =)

956 Lema@̂tre and Chate�



This means that the perturbation induced by the commutation decays in
either one of the two limits + � +� or = � 0. For any fixed =, 3 and 3c are
therefore tangent near the stable manifold: hence, the metric properties of
the doubling transformation 3, corresponding to its tangent description
near +� are given by those of the ``commuting'' doubling transformation.

5.4.3. Scaling Consequences and Universality. The com-
muting doubling transformation associates the operator 2g b S+� n

to

3n
c[2g b S+� n

]=22n
b Tn[S+� n

]

In this case the existence of a limit when n � � arises directly from the
existence of a well-defined collective behavior in the continuous limit and
when the local map converges to a universal map: when n � �, the
operator 3n

c[2g b S+� n
] converges to 2�

* b 81*.
We studied this convergence numerically from a simulation of 22n

b S2n

+� n
followed by a simple rescaling of the pdfs on the central band. The fixed-
point pdfs pc

n observed for these systems are displayed Fig. 10(a) for n vary-
ing from 1 to 32. They are then compared with the universal collective
fixed-points pn obtained from 3n[2g b S+� n

]: p32 and pc
32 are displayed on

Fig. 10(b) and differ by less than one percent. However, these series of pdfs
are not expected to have the same limit, and this appears when the distan-
ces D( pn& pc

n) are plotted versus n (insert of Fig. 10(b)). This excellent
agreement indicates that the macroscopic motion induced by the operator
3n[2g b S+� n

] is essentially dominated by its expression near the syn-
chronous manifold: in this limit, the space is continuous, the profile Xr�

is smooth, and the largest weights in the coupling are attributed to the
nearest sites.

In the case of the continuous field dynamics, 2�
* b S+ , the commuting

doubling transformation (20) reads,

3c[2�
* b S+]=2�

* - 2 b T[S+] (21)

Thanks to the asymptotic equivalence, it characterizes the universal
properties of coupled dynamics. In this case, the RG holds in its greatest
generality since BSs of maximal order are always reached. Moreover,
because * does not affect the collective behavior of the single-site observ-
ables contained in pt, Eq. (21) is strictly equivalent to the RG equation for
the local map for these macroscopic quantities. In particular, the width w
of these pdfs therefore scales with the reduction parameter : of the local
map: w& (+&+�)# with #=ln :� ln $. However, this ``normal'' behavior of
the single-site observables is accompanied by an increase of the coupling
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Fig. 10. 2-dimensional lattice of democratically coupled (g=0.2) logistic maps. (a): fixed
point regimes displayed by the operators 3n

c[2g b S+� n
]. (b) comparison of the universal collec-

tive behaviors obtained from the RG and the commuting RG.

length, since it is multiplied by ;=- 2 at each period doubling. The same
dilatation applies to all length-scales and in particular to the coherence and
correlation length: !& (+&+�) ;$ with ;$=ln ;� ln $. Let us mention finally
that in this continuous limit, the Lyapunov exponents are not expected to
be related to the coupling length *, and they all scale like their local coun-
terpart: 4& (+&+�)& with &=ln 2� ln $. However, this does not indicate,
as claimed in 10 the existence of a relation of the form !&4&1�2 in all
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generality: spatial lengthscales and Lyapunov exponents may vary dif-
ferently on any interval [+� n+1 , +� n]. This is quite obvious at the Ising-like
phase transition points +c

n observed for d=2 and d=3, where the correla-
tion length diverges while the largest Lyapunov exponent does not vanish.(14)

For large n, if the map is observed, e.g., at the band-splitting points,
3n

c[2�
* b S+� n

] is equivalent to the universal coupled system 2�
*;n b 81* with

a diverging coupling length, while 3n
c[2�

* b S+�
] is equivalent to 2�

*;n b 8.
These results for the continuous field operator 2�

* b S+ can be
immediately translated to the case of discrete (usual) CMLs. In this case,
the commuting doubling transformation (20) can be accompanied by a
resealing of the lattice mesh size to maintain a constant coupling length *.
This show that all the scaling properties of the local map are transmitted
to the coupled system, with the additional exponent ;=- 2 characterizing
the divergence of length-scales. Similarly, the shrinking of the widths of the
pdfs on the central band is controlled by the exponent :. This provides a
complete explanation of the results obtained numerically by van der Water
and Bohr.(10)

For example, in the case of two- or three-dimensional lattices of
coupled tent or logistic maps, the bifurcation points +c

n which are Ising-like
phase transitions are related to each other by the RG like the band split-
ting points +� n and therefore follow the same universal behavior. The con-
vergence +c

n � +� is characterized by the Feigenbaum constant $ of the
local map. For the same reasons, the root mean square of the pdfs pt

shrinks like the widths of the bands. Finally, for large n, operator 2m
g b S+� n

is equivalent to the universal operator 2�
* b 81*. This is illustrated on Fig. 9

where the asymptotic renormalized pdfs on the central band at the points
+� n are observed to converge.

6. CONCLUSION

Our work has shown how RG equations can be derived for coupled
unimodal maps. Like in the case of maps of an interval, this RG relies on
the following observation (which holds under some assumptions to be
defined more precisely): given a normalized unimodal map 8 on the phase
space I, the iterated map 82 can be restricted to an interval, and, by an
appropriate resealing, yields again a normalized unimodal map on I. The
transformation 3, which associates this unimodal map to 8, is called the
doubling transformation and provides the natural framework for under-
standing the self-similarity properties of discrete-time spatially-extended
dynamical systems.

RG for Banded States. In the case of coupled maps, 8=2m
g b S+ ,

and the RG equations hold for configurations where all sites lie in the same
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band at every timestep (banded-states). The RG relies on the commutation
properties of the coupling operator with the local map on bands where the
local map in invertible. It takes a simple form when applied to the case of
coupled tent maps since,

3[2m
g b S+]=22m

g b S+2

In this case the RG operates directly in the parameter space (+, m):
(+, m) � (+2, 2m) where the transformation + � +2 corresponds to the RG
for the tent map. This example provides a clear illustration of how the RG
acts: the local map is transformed by its own (local) doubling transforma-
tion T while the coupling operator is iterated, implying the doubling of the
diffusion constant, i.e., a multiplication of the coupling length * by ;=- 2.

The expression of the RG requires more care in the general case of
coupled unimodal maps. It leads to embed the usual linearly coupled maps
into the wider space ; of coupled maps of the form Q b S. The DCO Q may
contain some nonlinearities, although it should operate like a linear DCO
at least locally in phase space. With this enlarged definition, the doubling
transformation operates on ; and can be specified by its action on the
local map and on the DCO. It is striking that, in all cases, the local map
S is always transformed by its own (local) doubling transformation T.
Meanwhile, the (nonlinear) DCO Q is transformed into a operator (which
resembles Q2) with a doubled diffusion constant like in the case of linearly
coupled tent maps.

Commuting Doubling Transformation. Two remarks summarize
this approach: Firstly, a RG relation can indeed be written in the general
case, and it transforms the local map by the RG for maps on an interval.
Secondly, the action of this RG on nonlinear DCO resembles the iteration
Q � Q2. This leads to define a commuting doubling transformation 3c

which is an approximation of the exact RG. It accounts qualitatively for
the self-similarity displayed by these systems. Moreover, the property that,
near +� , the bands shrink, allows to show that 3 shares the universal
properties of 3c .

No Hypothesis on the Behavior on [+� 1 , +� 0]. The RG approach
does not provides any description of the behavior on the interval of
parameter [+� 1 , +� 0]; meanwhile, it does not rely on any assumption about
this behavior. This situation is similar, in facts similar to the case of single
maps, where depending on + # [+� 1 , +� 0], the system can be ergodic or reach
a periodic window. In the case of coupled maps, for a given coupling
operator, a given dimension, a given local map and + # [+� 1 , +� 0], the col-
lective behavior can be periodic or quasi-periodic, can display some
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hysteresis,... and this is not predicted by the RG. However, the RG permits
to relate the different regimes on all intervals [+� n+1 , +� n] to the behavior
observed on [+� 1 , +� 0]. Since no assumption is made about the particular
collective dynamics in a given band nor about the local state of the lattice,
the RG approach is very general and can be applied to CMLs in all dimen-
sions, globally-coupled maps, etc. However, the universal collective
behavior reached near +� is directly related to the continuous limit which
remains essentially unexplored in higher dimensions.

Validity. The single requirement needed to apply the doubling trans-
formation is that the system is in a BS. The property that, for strong
enough coupling, and from almost initial conditions, the system flows to a
BS has been termed non-trivial synchronization (NTS), and is a weaker
property than NTCB. However, the requirements on the coupled maps
dynamics to insure that NTCB is reached are often not explicited. A usual
assumption is that NTCB is achieved for sufficiently strong coupling
strengths. Therefore, the study of the necessary conditions for NTS is of
great interest since it allows both to state when the RG can be applied to
generic asymptotic regimes, and also to shed some light on NTCB. By use
of the RG itself, it is possible to show that, when + � +� , the coupling
operator takes on a wider spatial extension and therefore appears to be
stronger compared to the local map. This insures that a coupling operator
that guarantees that NTS is reached in a two-band regime, also allows to
reach NTS for any number of bands encountered when + � +� . Conse-
quently, there must be an infinite sub-harmonic cascade of phase transi-
tions, independently of the particular behavior observed on [+� 1 , +� 0].

Scaling Properties. Although the commuting doubling transforma-
tion is purely qualitative for the comparison of the regimes on the intervals
[+� n+1 , +� n] and [+� 1 , +� 0], it becomes exact in the limit + � +� , when com-
paring the regimes on [+� n+1 , +� n] and [+� n , +� n&1] for n � �. Therefore, it
is sufficient to study the universality properties displayed by 3c to charac-
terize the universality properties of coupled maps. The commuting doubling
transformation has the same simple form as in the case of the coupled tent
maps: it associates the properties of the RG for the local map to the con-
vergence of the coupling operator to the continuous limit, 2�

* . This insures
that the scaling properties of the local map are preserved (this concerns the
transition points, the rms of the asymptotic pdfs,...) and that lengthscales
are multiplied by ;=- 2 at each step.

This work provides the basis of a rigorous approach to RG for
coupled map systems. We have shown that the continuous limit plays an
essential role since the operator 2�

* is universal. We stress that the strong
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coupling limit of coupled maps, rather than corresponding to some particu-
lar, large value of the parameter g, is reached by considering continuously
coupled maps. Thus, any weak-coupling strategy appears irrelevant when
trying to account for nontrivial collective behavior.(20) Moreover, the
continuous limit provides the natural framework within which a ``zero tem-
perature'' expansion should be carried out and therefore seems to be a key
ingredient when trying to understand the emergence of collective motion
from local chaos.
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